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ABSTRACT

The structure of a 52/48 mol § copolymer of

vinylidene fluoride and trifluoroethylene has been in-

vestigated at various temperatures by X-ray diffraction.
Melt-solidified samples consist of a mixture of two

disordered crystalline phases, one trans-planar, the other
3/1-helical. Samples may be transformed to either phase by appro-
priate means to reveal a hexagonal (or pseudo-hexagonal) molecular
packing. The all-trans phase may be obtained by drawing

or poling at low temperatures; both treatments cause a
transformation of the disordered mixture of phases into

a well-ordered planar zig-zag phase. Isolation of the disordered
3/1-helical phase is achieved by heating to high tempera-

tures, whereupon all samples, irrespective of orientation or
polarization, undergo transformation to a poorly ordered helical
structure analogous to that of trifluoroethylene homopolymer;

upon cooling, the original, disordered mixture of phases is
recovered.
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INTRODUCTION

Because of its important piezoelectric and
pyroelectric properties, poly(vinylidene fluoride) has
attracted much scientific interest during the past few

d,z'4 these proper-

years. As has recently been summarize
ties are attributable to the ferroelectric nature of some
of the polymorphic forms of poly(vinylidene fluoride).
The most important of these polymorphs is the B-phase, in
which the molecules assume essentially a planar zig-zag

conformation and pack in an orthorhombic unit cell whose

dimensions render it pseudo-hexagonal.S The current
6,7

of ferroelectric polarization take advantage

theories




of this pseudo-hexagonal packing in considering the

! macroscopic alignment of dipoles resulting from electrical
poling to occur through cooperative rotations of chains
about their molecular axes in multiples of 60°.
Ferroelectric models predict existence of a Curie temper-
ature for this polymorph, above which polarization is lost,
presumably due to a pseudo-hexagonal randomization of
molecular packing in crystalline regions. However, other
than in one report,8 such a Curie temperature has not been ;i

found, and it is generally believedg’10

that this tempera-

ture may lie within the region of melting of poly(vinylidene [
[

fluoride). 'I

Attention has recently been directed toward

copolymers of vinylidene fluoride with other fluoro-
carbons, partly in the hope that Curie transitions would
be unequivocally observed. The copolymers used in this
regard have been those¢ of trifluoroethylene, since the

11 had shown that introduction of

work by Lando and Doll
17 mol % of trifluorcethylene allows the resulting co- 4
polymer to adopt the all-trans conformation and unit |
cell of the B-phase of poly(vinylidene fluoride). Yagi
and co-workers have recently synthesized these copolymers ;

12,13

over the entire range of composition, have probed

molecular conformation and crystalline form by X-ray

diffraction and infrared spectroscopy,14 and have inves-

tigated relaxational behavior by means of dielectric and

. . 1°¢ .
dynamic mechanical measurements.>’*!° 12-15

They report




that pure trifluoroethylene is stereoirregular, contains
~50% of inversely added monomeric units, and adopts a 3/1
helical conformation (as was earlier found by Xolda and
Lando),16 that copolymerization with up to ~385 mol %
vinylidene fluoride yields trans- or trans-like conforma-
tions, and that higher concentrations of vinylidene fluoride
yield a TGTG conformation.

Extensive studies have been conducted by a number
of authors in the intermediate compositional spectrum (i.e.,
around 50 mol % of each constituent), for which a transition

in the vicinity'of 70°C has been interpreted as being ferro-

electric in nature. Specifically, observations of a dielectric

15,17-20

anomaly accompanied by critical slowing down of the

18-20 15,19,20

relaxation time, a secondary endotherm asso-

ciated with an anomalous peak in specific heat,zo

19-21

changes in

lattice spacing, in sample dimensions,19 and in IR

spectra,19 as well as disappearance of remanent polarization

and piezoelectricity,19

19,20

all occurring around 70°C, have been
taken as reflecting the existence of a Curie point at
this temperature.

However, the detailed structure of these copolymers
above and below the transition tehperature has not been
determined; neither is it known whether the transition occurs
intermolecularly (i.e., by randomization of dipole vectors of

polar chains) or intramolecularly (i.e., by conformational

changes leading to a nonpolar chain structure). We have

attempted to answer these questions in this set of two

19-21




companion papers: In the present article, we examine the
crystalline forms in a 52/48 mol % copolymer of vinylidene
fluoride and trifluoroethylene, as well as the crystalline
transformations that take place as a result of drawing,
poling, or annealing; the second part of this work (following
paper)ZZ is concerned with a detailed investigation of
structural changes occurring around the transition tempera-
ture of this copolymer, as determined by dielectric, X-ray,

and infrared techniques.

EXPERIMENTAL

The samples used in this investigation were of a
52/48 mol % copolymer of vinylidene fluoride and trifluoro-

23

ethylene, provided by Daikin Kogyo Co., Ltd, Japan. They

had been prepared by bulk polymerization at 22°C using a
peroxide initiator, and were in random <:onfigurat:i0n.13'1s
Although the exact extent of reversed monomeric units is not
known for this copolymer, poly(vinylidene fluoride) generally
contains 5% of inversely-added units,4 and polytrifluoro-
ethylene NSO%.IZ For comparison purposes, an experimental
sample of polytrifluoroethylene, obtained from Pennwalt Corp.,

was also examined.z3

Films were made by compression-molding
at 180°C and cooling to room temperature. Oriented specimens
were prepared by drawing at a rate of 10%/min. at the desired

temperatures. Electrical poling was conducted at 25°C and

700 kV/cm after evaporation of Au electrodes. X-ray dif-

fraction patterns were examined at various temperatures




using CuKa radiation detected either by a vertical

goniometer or by an evacuated flat-plate camera.

RESULTS AND DISCUSSION

(a) Molecular conformation. While earlier

studies, based upon diffractometric data from the 4-5 K
region, identified copolymers in this compositional range
with the B-phase (all-trans), examination of the full
diffraction pattern now reveals a considerably more compli-
cated structure. Such a diffraction pattern of melt-
crystallized 52/48 copolymer, recorded at room temperature,
is shown in Figure la: here, in addition to the strong
reflection at ~4.64 X, two weak, diffuse reflections are
seen centered at ~2.56 X and ~2.30 K; the latter is partic-
ularly broad, extending from ~2.21 X to ~2.38 X. Indexing
of these reflections may be made from a fiber pattern; as
is discussea mure fully below, this requires orientation
of the specimen at temperatures above ~75°C, lower tempera-
tures promoting crystalline transformations. Figure 1b
shows that high-temperature orientation causes the diffuse
reflection at 2.56 R to become clearly meridional, thus
confirming presence of the planar zig-zag conformation,
albeit in a disordered state (as evidenced by the weakness
and diffuseness of this 001 reflection). The much broader
reflection centered at 2.30 R also moves toward the meridian,

©
but remains much more arced than its counterpart at 2.56 A.

e




To identify the broad reflection at 2.30 X,

we first take account of the contribution of planar

zig-zag segments: as is known from the structure of

5
z,

composite {201,111} reflection. Assuming hexagonal packing

g-PVF the 001 reflection is accompanied by a strong,

of all-trans segments on a lattice consistent with the
strong reflection at 4.64 R (this assumption is discussed
in detail below), the {201,111} composite is expected to

be off-meridional at a spacing of 2.24 Z. This would
explain the arcing of the‘reflection centered at 2.30 X
but not ]}S d-spacing or breadth. A full explanation
requires knowledge of the diffraction pattern of trifluoro-
ethylene homopolymer: as seen in Figure 2 - and in agree-

16 _ this

ment with the earlier results of Kolda and Lando
polymer is characterized by a broad, arced, and diffuse

[«]
meridional reflection at 2.31 A that is identified as 003

of a distorted 3/1 helical conformation. An exact 3/1 helix

(i.e., a carbon chain of normal bond distances and angles) would

have an 003 repeat of 2.1 R; the higher value obtained here is

16, and is primarily due to the large

common among fluoropolymers
van der Waals radius of fluorine as compared to hydrogen, and to
the disorder resulting from stereoirregularly- and inversely-added

monomeric units. This disorder causes random deviations from the
(TG) 5 and (TC)s conformations of regular 3/1 helices, leading to
the observed dafuseness of the meridional reflection. The great
similarity in spacing, breadth, and arcing between the two corres-

ponding reflections in polytrifluoroethylene and its 52/48 copoly-

mer with vinylidene fluoride is obvious from Figures 1b and 2b.




As a result, we conclude from the above that the

molecules in this particular copolymer take on two disordered

conformations upon crystallization from the melt: some
chain segments adopt a planar zig-zag conformation, while
others crystallize in a 3/1 helix; presumably, molecular
regions rich in vinylidene fluoride would favor the former,
while those containing mostly trifluoroethylene would favor
the latter. It should again be emphasized that both of these

conformations are adopted in a disordered manner, evidenced by

the weakness and breadth of their meridional reflections, and -
attributed chiefly to the essentially random addition of

monomeric units during copolymerization.

(b) Molecular packing. After determining that
copolymer chains érystallize from the melt in a mixture of
disordered trans and.3/1l-helical conformations, we examine the
manner in which these chains pack. The equatorial reflec-
tion at 4.64 A (see Figure 1b), considered a singlet by

15,20,21 pas recently been described by Yamada

most authors,
et gl.lg as a closely spaced doublet at room temperature.

A detailed study of this reflection as a function of temper-

ature is given in the second part of our work (following

paper);zz here, we discuss only an equatorial scan at 25°C [
(Figure 3) showing that the strong reflection at 4.64 A
Figure 1 is indeed caused by the superposition of two inde-

pendent peaks at 4.59 X and 4.69 R. Keeping in mind the

two-phase nature of this copolymer determined above from

meridional X-ray data, this equatorial doublet leads to




the following inferences on chain-packing: Either (a) each
phase gives rise to only one peak, thus implying hexagonal
(or pseudo-hexagonal) packing of molecules in both phases;
or (b) at least one phase contributes to both peaks and is
therefore of orthorhombic or lower symmetry. Yamada and

co-workers,19

not having the meridional evidence for a two-
phase structute described above, accepted the second inter-
pretation by associating the two equatorial peaks with the
200 and 110 reflections of a single phase; we show presently
that the first interpretation is correct by obtaining each
phase separately .and demonstrating hexagonal (or, at least,

pseudo-hexagonal) packing of molecular chains.

(c) Effect of drawing or poling. The all-trans phase

may be obtained separately by a transformation accompanying drawing
or poling at.temperatures below ~65°C.. Photographic and
diffractometric evidence for this effect of drawing is seen

in Figure 4. Here, the 001 and {201,111} reflectious of

the ail-trans phase are clearly resolved; their intensity

is significantly greater than in the unoriented specimen

(Figure la) or that drawn at high temperature (Figure 1b).

At the same time, these meridional reflections become sharp,

<]
and practically all traces of the broad reflection at 2.30 A, attri-

butable to the—/’d;sgffeggfical conformation, disappear. The
equatorial diffractogram in Figure 4 shows that these meri-
dional changes are accompanied by transformation of the doublet
at 4.69 A and 4.59 A to a single peak at 4.53 A. All this

X-ray evidence may be interpreted as follows: Drawing at




low temperatures causes not only molecular orientation, but
also a transformation of a mixture of disordered 3/1-helical

and planar zig-zag chain segments to a well-ordered all-

trans phase; it is this much more ordered structure that we

consider responsible for the more efficient hexagonal pack-
-}
ing of chains at 4.53 A, and we therefore identify the

o
4.59 A peak with the disordered trans-phase.

Poling proceeds easily at room temperature and
low fields and causes the same transformation as drawing;
Figure 5 shows the changes, in the diffraction pattern and
equatorial diffractogram (the poled specimen was an ex-
truded thin film, and is therefore very slightly orientad;
the very weak ring located between the 001 and {201,111}
reflections stems from the evaporated gold used in poling).
Thus, it is seen that, at low temperatures, poling has the
same effect as mechanical drawing in causing a transformation
to a well-ordered, hexagonally packed, all-trans phase. On
the other hand, poling above ~60°C becomes progressively less
effective, and no permanent polarization is imparted to
specimens poled above 70°C; reasons for this lie in the
nonpolar structure of the samples at these temperatures, as
discussed immediately below.

(d) Effect of heat-treatment. The 3/1-helical phase may

be obtained separately by heating of.samples ta.temperatures

above 70°C. For unoriented specimens, the diffuse reflection
Q
at 2.56 A is no longer visible above 70°C. As is discussed in

greater detail in the second part of this report (foilowing

2 .
i paper 2), the equatorial peak at 4.69 R rapidly increases in




- 10 -

d-spacing and by 70°C has attained the value characteristic of poly-
trifluoroethylene; it is therefore attributed to the packing of the
original 3/1-helical phase of the copolymer. At higher temperatures
(i.e.~90°C), the.all-trans equatorial peak also reaches the spacing
of trifluoroethylene homopolymer. These results show that heating
beyond the 70°C transition temperature to ~ 90°C causes transforma-
tion of the original disordered mixture of phases to a single, dis-
ordered 3/1-helical phase analogous to that of polytrifluoroethylene,
and that such helices are hexagonally (or pseudo-hexagonally) packed.
Moreover, the ineffectiveness of poling at high temperatures is now
clearly attributable to the nan-polar nature of the disordered
helical conformation. ;
In the case of oriented or poled films, the more orderly
packed structure allows survival of the meridionaliééé&g reflection ¢o
temperatures slightly higher (i.e., 80-85°C) than the 70°C-transition.
This is illustrated in Figure 7, where little change in the diffraction
pattern is seen between 259C and 60°C, and where reflections attri-
butable to the well-ordered trans-planar phase have substantially
disappeared by about 80°C. At 90°C the pattern is uniquely character-
istic of the disordered 3/1-helical phase, whereas subsequent cooling
to room temperature causes a return to a mixture of disordered
trans-planar and 3/1-helical pha§es. -Interestingly, while this
heating and cooling cycle erases the high trans-order induced by : [
drawing, it conserves the simultaneously imparted uniaxial orien-
tation (see Figure 7e). From that point on, the copolymer, although
molecularly oriented, undergoes transformations as if unorianted;
for example, Figure 7f shows that the 2.56 R reflection disappears

at ~709C during the second heating cycle rather than ~85°C, as

observed during the first.




(e) Effect of draw temperature. It is clear

from the above that low temperatures favor the all-trans con-
formation and high temperatures the disordered helical one. This

trend also applies to the temperature of drawing, which

controls the polymorphism, order, and molecular orientation

of the final structure. As seen in Figure 8, all reflec-

tions are generally highly arced despite the considerable

extension (4:1), presumably as a result of an imperfect re-

alignment of chains that stems from the profusion of molecular

defects. This misalignment is especially pronounced at room !
temperature (Figure 8a), wﬁere restricted flow allows the
molecules only to approach, rather than to attain full
parallelism with the draw direction; the splitting of arcs
seen in Figure 8a in fact indicates a double orientation,
equivalent to a quasi-twinned structure. Drawing at higher
temperatures up to ~65°C causes transformation to the well-
ordered all-trans phase, as discussed above, the molecular
chains now becoming more fully parallel to the draw direction
(see Figure 8b). With increasing temperature, more of the
original blend of disordered phases is preserved and less is
oriented to the well-ordered planar zig-zag structure (Figure 8c).
'Abovéﬁtﬂé'tfinsfzzaﬁ_téﬁperitufé.(i.e.; 75°C or higher), draw-
ing results in orientation of the original disordered mixture
without any ordering or transformation (see Figure 8d). At
the same time, the specimens become increasingly weak and flow
easily; orientation at 85°C (Figure 8d) could be achieved only

at very low rates (0.5%/min) and to limited draw ratios (2:1).




CONCLUSIONS

From the above results, we conclude that melt-
crystallized 52/48 % copolymer of vinylidene fluoride and
trifluoroethylene contains a mixture of disordered trans-
planar and 3/1-helical phases, each packed in a hexagonal

(or pseudo-hexagonal) manner. Drawing or poling at tempera-

tures up to Vv@S°C cause both a transformation to a single all-trans

phase and .a substantial improvement in conformational and packing
order; at higher temperatures, poling is ineffective, while
drawing results only in or;entation of the originally

disordered structure. Heating of specimens to these high
temperatures causes a progressive transformation to a

hexagonally (or pseudo-hexagonally) packed, non-polar, disordered
3/1-helical phase, analogous to that of trifluoroethylene
homopolymer. These conclusions are further substantiated

22 in which we discuss the

in the following article,
structural and dielectric changes occurring as the copolymer

is heated through the transition region.

ACKNOWLEDGEMENTS

We would like to thank Drs. J. Sako of Daikin
Kogyo Co., Ltd., and R. Ferren of Pennwalt Corp. for pro-
vision of samples. The authors from NBS also acknowledge

partial support for this work from the Office of Naval

Research.

o e e —




REFERENCES AND NOTES

1. (a) Bell Laboratories; (b) National Bureau of Standards;
(¢) permanent address: Institute of Physical and Chemical
Research, 2-1, Hirosawa, Wako-shi, Saitame 351, Japan.

2. Kepler, R. G.; Anderson, R. A., CRC Crit. Rev. Solid
State Mater. Sci. 1980, 9, 399.

3. Broadhurst, M. G.; Davis, G. T., in "Topics in Modern
Physics - Electrets,'" Sessler, G. M. (Ed.), 1980,
Springer Verlag, W. Berlin.

4. Lovinger, A. J., in "Developments in Crystalline
Polymers ¢ 1," Bassett, D. C. (Ed.), 1982, Applied
Science Publishers, London.

5. Hasegawa, R.; Takahashi, Y.; Chatani, Y.; Tadokoro, H.,
Polym. J. 1972, 3, 600.

6. Kepler, R. G.; Anderson, R. A., J. Appl. Phys. 1978, '
49, 1232. ' !

7. Broadhurst, M. G.; Davis, G. T., Am. Rep., Conf. Elec.
Insul. Diel. Phenom. 1979, 48, 447.

8. Herchenréder. P.; Segui, Y.; Horne, D.; Yoon, D. Y.;
Phys. Rev. Lett. 1980, 45, 2135.

9. Nakamura, K.; Wada, Y., J. Polym. Sci. A-2 1971, 9,
161.

10. Micheron, F., Rev. Tech. Thomson - CSF 1979, 11, 513.

11. Lando, J. B.; Doll, W. W., J. Macromol. Sci. - Phys.
1968, B2, 20S.

12. Yagi, T., Polym J. 1979, 11, 353.
13, Yagi, T.; Tatemoto, M., Polym. J. 1979, 11, 429.
14, Yagi, T., Polym. J. 1979, 11, 711.

15. Yagi, T.; Tatemoto, M.; Sako, J., Polym. J. 1980, 12, ‘
209. -

16. Kolda, R. R.; Lando, J. B., J. Macromol. Sci. - Phys.
1975, B1ll1l, 21.

17. Uchidoi, M.; Iwama, T.; Iwama, X.; Tamura, M., Rep. Pro
Polym. Phys. Jpn. 1979, 22, 345.

18. Furukawa, T.; Johnson, G. E., J. Appl. Phys. 1981, 52, )
940. )
{




19.

20.

21.

22.

23.

-
[
~N

'

Yamada, T.; Ueda, T.; Kitayama, T., J. Appl Phys.
1981, 52, 948.

Furukawa, T.; Johnson, G. E.; Bair, H. E.; Tajitsu, Y.;
Chiba, A.; Fukada, E., Ferroelectrics 1981, 32, 61.

Tajitsu, Y.; Chiba, A.; Furukawa, T.; Date, M.; Fukada, E.,
Appl. Phys. Lett. 1980, 36, 286.

Davis, G. T.; Furukawa, T.; Lovinger, A. J.; Broadhurst,
M. G., Macromolecules 1982, 15, 000 (following arti:cle).

A commercial material is identified in order to specify
adequately experimental procedure. Such identification

does not imply recommendation by the National Bureau of
Standards. '

:
i
%
]
f
'
;




Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure S:

Figure 6:

Figure 7:

Figure 8:

FIGURE LEGENDS

Room-temperature X-ray diffraction patterns of
copolymer after (a) melt-solidification, and
(b) uniaxial orientation at 80°C.

Room-temperature X-ray diffraction patterns of
melt-crystallized trifluoroethylene homopolymer
(a) before, and (b) after uniaxial orientation
at 25°C. A diffractometric scan of the strongest
reflection is given in (c¢).

Equatorial diffractometric scan at 25°C, showing
resolution of the strongest reflection of melt-
crystallized copolymer into two peaks.

Flat-plate X-ray diffraction pattern and
equatorial diffractogram recorded at room
temperature from a specimen drawn 4:1 at 50°C.

Flat-plate X-ray diffraction pattern and
equatorial diffractogram recorded at room
temperature from a specimen poled at 700kV/cm
at 25°C.

Flat-plate X-ray diffraction pattern and
equatorial diffractogram recorded at 90°C
from an unoriented specimen.

Transformations in the structure of oriented
copolymer as reflected in its diffraction pattern
recorded at the following temperatures: (a) 25°C,
(b) 60°C, (c) 80°C, (d) 90°C, (e) after cooling
down go 25°C, and (f) after subsequent reheating
to 70°C.

Effect of draw temperature on the structure of
copolymers uniaxially oriented 4:1. Diffraction
patterns recorded at room temperature after
drawing at (a) 25°C, (b) 50°C, (c) 70°C, and

(d) 85°cC.
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